
=

NASA-CR-192912

Zebra: A Striped Network File System

//v-6 /-c/_.

- //

John H. Hartman and John K. Ousterhout

/
Ill

I i
i
I

/

(NASA-CR-1929!2) ZEBRA: A STRIPED

NETWORK FILE SYSTEM (California

Univ.) 11 p

G3/61

N93-25250

Unclas

0158656

\

III
•°o
• ,
• o

°°°

I

I

I

i i

J •

Report No. UCB/CSD 92/683

April1992

Computer Science Division (EECS)

University of California, Berkeley
Berkeley, California 94720

mm





Zebra: A Striped Network File System

John H. Hartman

John K. Ousterhout

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

Abstract

This paper presents the design of Zebra, a striped network file system.

Zebra applies ideas from log-structured file system (LFS) and RAID

research to network file systems, resulting in a network file system that has

scalable performance, uses its servers efficiently even when its applications

are using small files, and provides high availability. Zebra stripes file data

across multiple servers, so that the file transfer rate is not limited by the

performance of a single server. High availability is achieved by maintain-

ing parity information for the file system. If a server fails its contents can

be reconstructed using the contents of the remaining servers and the parity

information. Zebra differs from existing striped file systems in the way it

stripes file data: Zebra does not stripe on a per-file basis; instead it stripes

the stream of bytes written by each client. Clients write to the servers in

units called stripe fragments, which are analogous to segments in an LFS.

Stripe fragments contain file blocks that were written recently, without

regard to which file they belong. This method of striping has numerous

advantages over per-file striping, including increased server efficiency, effi-

cient parity computation, and elimination of parity update.

This paper will appear in the proceedings of the USENIX Workshop on

File Systems, May 1992.

This work was supported in part by the National Science Foundation under grant CCR-8900029,
the National Aeronautics and Space Administration and the Defense Advanced Research Projects

Agency under contract NAG2-591.
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1 Introduction

Zebra is a network file system architecture designed to provide both high performance

and high availability. This is accomplished by incorporating ideas from log-structured file

systems, such as Sprite LFS [Rosenblum91], and redundant arrays of inexpensive disks

(RAID) [Patterson88] into a network file system. From log-structured file systems Zebra

borrows the idea that small, independent writes to the storage subsystem can be batched

together into large sequential writes, thus improving the storage subsystem's write perfor-

mance. RAID research has focused on using striping and parity to obtain high perfor-

mance and high availability from arrays of relatively low-performance disks. Zebra uses

striping and parity as well, resulting in a network file system that stripes data across multi-

ple storage servers, uses parity to provide high availability, and transfers file data between

the clients and the storage servers in large units. The notable features of Zebra can be char-

acterized as follows:

Scalable performance. A file in Zebra may be striped across several storage servers,

allowing its contents to be transferred in parallel. Thus the aggregate file transfer band-

width can exceed the bandwidth capabilities of a single server.

High server efficiency. Storage servers are most efficient handling large data transfers

because small transfers have high overheads. Large transfers are relatively simple to

achieve for large files, but small files pose a problem. Client file caches are effective at

reducing server accesses for small file reads, but they aren't as effective at filtering out

small file writes [Baker91]. Zebra clients use the storage servers efficiently by writing

to them in large transfers, even if their applications are writing small files.

High availability 1. Zebra can tolerate the loss of any single machine in the system,

including a storage server. Zebra makes file data highly available by maintaining the

parity of the file system contents. If a server crashes its contents can be reconstructed

using the parity information. The use of parity allows Zebra to provide the availability

of a system that maintains redundant copies of its files while requiring only a fraction

of the storage overhead.

Uniform server loads. File striping causes the load incurred by a heavily used (hot) file

to be shared by all of the storage servers that store the file. In a traditional network file

system a hot file only affects the performance of the server that stores it, requiring that

hot files be carefully distributed among all of the servers to balance the load.

Zebra is currently only a paper design, although a prototype is being implemented in

the Sprite operating system [Ousterhout88]. This paper describes the design of Zebra, not

the prototype implementation. The rest of this paper is organized as follows. Section 2 dis-

cusses striping and its application to a network file system, Section 3 discusses the use of

parity to provide high availability, Section 4 gives an overview of the Zebra architecture,

and Section 5 describes the Zebra design in more detail. Section 6 covers Zebra's status

and future work, and Section 7 is a conclusion.

1. The distinction between availability and reliability, while it is important, is not particularly rele-
vant to this paper. The arguments made here regarding the availability of Zebra also apply to its

reliability.
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2 Why Stripe?

Traditional network file systems confine each file to a single file server. Unfortunately

this means that the rate at which a file can be transferred between the server and a client is

limited by the performance characteristics of that one server, such as its CPU power, its

memory bandwidth and the performance of its I/O controllers. This makes it difficult to

improve the performance of the network file system without improving or replacing the

server. Striping a file over several servers allows those servers to transfer the file in paral-

lel, so that the aggregate transfer rate can be much higher than that of any one server. The

file transfer performance of the file system can be improved simply by adding more serv-

ers.

A striped network file system has several economic advantages over a traditional net-

work file system. First, the storage servers do not need to be high-performance, nor do

they need to be constructed out of special-purpose hardware. Servers in a traditional net-

work file system are often among the more expensive and high-performance machines in

the system. In contrast, storage servers in a striped network file system can be relatively

modest machines, thereby improving their cost/performance and reducing the fraction of

the total system cost that they represent. Second, a striped network file system allows cli-

ents to be upgraded without requiring server upgrades as well. The increased client perfor-

mance can be matched by increasing the number of servers, rather than replacing them.

Both of these considerations make a striped network file system an economically attrac-

tive alternative to a traditional network file system.

The idea of using striping to improve data transfer bandwidth is not a new one. It's

often used to improve the performance of disk subsystems by striping data across multiple

disks attached to the same computer. Mainframes and supercomputers have used striped

disks for quite a while [Johnson84]. The term disk striping was first defined by Salem and

Garcia-Molina in 1986 [Salem86]. More recently there has been lots of interest in arrays

of many small disks, originating with the paper by Patterson et al. in 1988 [Patterson88].

All of this work focuses on aggregating several relatively slow disks to create a single log-

ical disk with a much higher data rate.

In recent years striping has been applied to file systems as a whole. In these file sys-

tems the blocks of each file are striped across multiple storage devices. These storage

devices may be disks, as in HPFS [Poston88], I/O nodes in a parallel computer, as in CFS

[Pierce89] and Bridge [Dibble90], or they may be network file servers as in Swift

[Cabrera91]. It is important to note that these systems stripe on a per-file basis, therefore

they work best with large files. Small files are a kind of Catch-22: if they span all the stor-

age devices then the amount stored on each device will be small, causing the devices to be

used inefficiently, but if small files aren't striped then the system performance when writ-

ing small files will be no better than that of a non-striped system. Applications that write

many small files will not see a performance improvement.

Striping also serves as a load-balancing mechanism for the storage devices. Ideally the

storage devices would have identical loads, so that no one device saturates and becomes a

bottleneck. If files are constrained to a single storage device then care must be taken to

ensure that hot files are evenly distributed across the devices. Sniping eliminates the need

for careful file placement by distributing files over multiple devices. The load caused by a
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heavily used file is shared by all the devices that store it, thus reducing the variance in

device loads.

3 Availability

Striping can potentially reduce the availability of a network file system, since each file

in the system is distributed over several storage servers. The loss of any one of these serv-

ers will cause the file to be unavailable. If a striped file system with multiple servers

replaces a file system with a single server, then the availability of the system will be

reduced (assuming the servers in both systems have the same failure rate).

Network file systems often improve availability by maintaining redundant copies of

each file. Redundant copies are advantageous because they allow the system to withstand

server failures (provided at least one copy remains available), and they can allow the sys-

tem to tolerate network partitions. If each section of the partitioned network contains a

copy of each file then files can continue to be accessed without interruption. Redundant

copies do have disadvantages, however. Additional storage is needed for the extra copies,

and there are complexities and overheads involved in keeping the copies up-to-date.

An alternative approach is to maintain error-correcting information that allows miss-

ing data to be reconstructed. RAID systems favor this scheme. For example, a simple par-

ity scheme will allow the system to tolerate the loss of a single server. One block of data

from all but one server is XOR'ed together to produce a parity block which is stored on

the remaining server. Should one of the blocks of data become unavailable it can easily be

recomputed from the other blocks of data and the parity block. The advantage of this

approach is that the storage required for the parity blocks is much less than is needed for

redundant copies. Swift proposes to use parity to tolerate server failures for just this rea-

son.

It is easier to implement a parity mechanism for a RAID storage system than for a net-

work file system, however. A RAID is usually connected to a host computer, through

which all data transfers to and from the array must pass. This makes the host a convenient

location to compute parity. A network file system doesn't have a comparable centralized

location, however. This makes it more difficult to compute parity across physical storage

blocks or file blocks. If files are written randomly, or written by multiple clients simulta-

neously, then no single location may contain all of the data needed to perform the parity

calculation. File updates are also problematic, since they require updating the parity of the

modified blocks as well. The new parity must be computed from the old and new contents

of the block, potentially causing several server accesses per update. In addition, the update

of a block and its parity must be an atomic operation, since data could be lost if the two get

out of sync. Ensuring that two writes to two different servers are atomic is likely to be

complex and expensive.

4 Zebra Stripes

Zebra differs from existing striped network file systems in that it does not stripe on a

per-file basis. Instead it stripes on a per-client basis: all of the new data from a single client

is formed into a single logical stream, regardless of which files the data belongs to. This

3
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Figure 1: Zebra striping vs. per-file striping. This fi_ure shows the same sequence of file
data being written in both Zebra and in per-file striping. Each shaded region represents a
piece of data written to a single file. Regions with the same shading belongto the same file.
Zebra clients pack together file blocks and write them to the storage servers m large transfers
called stripe fragments. Per-file striping requires more transfers, because small writes aren't
batched. In this example the striping unit (the maximum amount of data written to a single
server) in the per-file system is the same stze as a stripe fragment in Zebra. Parity writes are
not shown.

stream is then striped across the storage servers. The data written to the servers in a single

pass by a single client is called a stripe. The portion of a stripe that is written to each

server is caLled a stripe fragment. Clients compute the parity of the stripe fragments as

they are written. At the end of a stripe the client writes out the resulting parity fragment

and begins a new parity computation. Note that each stripe is written by a single client.

Multiple clients may be writing to the storage servers simultaneously, but they are all writ-

ing to distinct stripes. Figure 1 illustrates the Zebra striping mechanism.

Zebra, like all file systems, must maintain metadata that records the physical storage

location for each file block. When a file block is accessed the file's metadata is used to

determine which storage location to use. In Zebra thefile manager is responsible for man-

aging the metadata (See Section 5.2 for details). Once a client has written a stripe it sends

a summary of the stripe's contents to the file manager, so that the metadata can be updated

accordingly.

Clients are responsible for reconstructing files from their constituent stripe fragments.

Upon opening a file for reading the client obtains the metadata for the file from the file

manager. To read the file the client uses the metadata to determine which stripe fragments

to access, then retrieves the desired portions of those fragments from the storage servers

and reassembles them into the file.

Stripes in Zebra are analogous to segments in a log-structured file system. They are

large conglomerations of file data that can be efficiently transferred. The data stored in a

stripe exhibits temporal locality, rather than spatial locality, i.e. a stripe contains blocks

that were written during the same period of time rather than blocks from the same file.

4



Zebra April 28,1992

Like segments, stripes are immutable objects. Once they arc written they cannot be modi-

fied. Free space is reclaimed from stripes by cleaning them (see Section 5.3).

Zebra's method of striping has several advantages over per-file striping. First, the

striping algorithm is relatively simple. No special mechanisms are needed for handling

small files, randomly written files, or file updates; their bytes are simply merged into the

client's stream of bytes. Large files that are sequentially written will be striped in a manner

similar to per-file striping, however. Each file wilI be divided into stripe fragments and

striped across the servers. Second, parity computation and management is simplified. Par-

ity is easily computed because each client computes the parity of the stripes it produces.

The parity computation doesn't require any coordination between clients, or additional

data transfers between the servers and the clients. Since stripes are immutable and parity is

never updated, Zebra also avoids having to atomically update a file and its parity. A simple

timestamp mechanism is sufficient for ensuring that a stripe and its parity are consistent. If

a client should crash while in the process of writing a stripe the timestamps are used to

determine how many of the stripe fragments were actually written prior to the crash, so

that the stripe's parity can be updated accordingly.

Striping the logical stream of bytes from each client, rather than files, improves the

performance of writing small files. Clients write stripe fragments to the storage servers,

not files or file blocks. This decouples the size of the files used by the client applications

from the size of the accesses made to the storage servers. Applications that write many

small files will see a performance improvement over traditional network file systems

because the files will be batched together and written to the server in large transfers.

5 Zebra Design

Figure 2 illustrates the components of Zebra. The storage servers store file data, in the

form of stripe fragments. The file manager manages the file name space and keeps track of

where files are located. The stripe manager handles storage management by reclaiming the

space occupied by data that is no longer used. The rest of this section describes these com-

ponents in more detail.

i i Network : _.
_111111 wI I I I I I I I II I I I I wI II I I _11111111 Illl III I II I I |11 III I II I I I I I I I I l I I I II I I I I I I I II I I I n I I Ill I I I I I III IIII I III III I I_i

g g g g

..- - : .
g - - g g

Figure 2: Zebra schematic. Squares represent individual machines; circles
represent logical entities. The file manager and the stripe manager can run on
any machine in the system, although it is likely that one machine will be
designated to run both of them.
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5.1 Zebra Storage Servers

The Zebra storage servers are merely repositories for stripe fragments. They create

new fragments in response to client requests and retain the fragments until they are deleted

by the stripe manager. The fragments are opaque to the storage servers -- the servers know

nothing about the files or blocks that the fragments contain. This simple functionality

makes it possible to implement the storage server in a variety of different ways. One

option is to build a special-purpose storage server that has been optimized for storing

stripe fragments. Another is to store stripe fragments as files in a local file system. This

approach is not only easy to implement but it also allows the storage servers to be tradi-

tional network file servers, some of whose files happen to be Zebra stripe fragments.

The simple functionality of the storage servers is well-suited to machines that empha-

size I/O capabilities rather than CPU speed. For example, the RAID-I] project at Berkeley

[Lee92] is building a storage system that has a high-bandwidth connection between its

disk array and the network. Unfortunately, it is relatively expensive for the host CPU to

access the data that passes over that connection. Traditional network file systems are likely

to run slowly on such an architecture since the host must process each file block. A Zebra

storage server, on the other hand, only performs per-fragment processing and is better able

to take advantage of this type of architecture.

5.2 Zebra File Manager

The Zebra file manager manages the file system metadata, i.e. the file system name

space and the mapping of logical file blocks into stripe fragments. Clients send all name

space modifications, such as file creation and deletion, as well as file open and close

events to the file manager. This allows the file manager to ensure the consistency of the

metadata even if clients are modifying it concurrently. The file manager is a critical

resource; the file system cannot be accessed if its metadata is unavailable. Zebra employs

a backup file manager that can take the place of the primary file manager should the pri-

mary fail. During normal operation the primary file manager logs all changes in the meta-

data to the backup. If the primary should fail the backup uses this information to

reconstruct the current state of the metadata.

The modification rate of the metadata in Zebra is likely to be higher than in traditional

file systems. This is because the mapping of a file block to a stripe fragment changes when

the file block is modified. Clients determine the storage location for a file block by packing

it into a stripe fragment and writing the fragment to the next server in its rotation. If a cli-

ent overwrites an existing file block then the new version of the block will probably be

stored in a different fragment. When a client writes a stripe it must tell the file manager

which file blocks it contains so the file manager can update its metadata.

The centralization of name service and file mapping information on the file manager is

a potential performance bottleneck. One technique for eliminating this bottleneck is to

have the clients cache both name and mapping information. Client name caching has been

shown to be effective at reducing the load on the name server in a network file system

[Shirriff92]. By caching whole directories of file names and their mapping information the

Zebra clients can eliminate the need for contacting the file manager each time they modify

the name space or access a file.



Zebra April 28, 1992

5.3 Stripe Manager

The Zebra stripe manager is responsible for managing the storage space on the storage

servers by reclaiming free space from existing stripes. Its function is similar to the seg-

ment cleaner in a log-structured file system. The manager keeps a list of all stripes in the

system, and which file blocks they contain. As blocks are deleted or overwritten the list is

updated accordingly. When free space is needed a stripe is cleaned 2, a process in which its

live data is read and then written to a new stripe. The storage servers are then notified that

the space currently allocated to the cleaned stripe can be reused. The stripe manager repre-

sents a centralized location in which the live data from stripes that are cleaned can be

formed into stripe fragments and their parity computed. Zebra uses a backup stripe man-

ager to ensure that the stripe manager is always available.

Cleaning's impact on system performance is proportional to the amount of live data in

the stripes that are chosen to be cleaned. Ideally the stripes would not contain any live

data, so that cleaning them would not cause any data transfers. Measurements of Sprite

LFS show that the write traffic to the disk due to cleaning is relatively low (for non-swap

file systems it is between 2% and 7% of the overall write traffic to the disk) [Rosen-

blum91]. Further research is required to determine if Zebra exhibits the same behavior.

6 Status and Future Work

Zebra is currently a paper design. Implementation of a prototype began in the spring of

1992, and should be completed by late 1992. Once the prototype is Completed it will be

measured and compared to existing network file systems in the following ways:

• Performance under a variety of workloads, each of which has a different distribu-

tion of file sizes and read/write ratios. The emphasis will be on Zebra's perfor-

mance running workloads with lots of large files (supercomputer workload),

and workloads with lots of small files (UNIX workload). The workloads will

probably be synthetic.

• Parity's cost, in terms of CPU cycles, network bandwidth, and storage server

resources.

• Stripe cleaning's impact on performance.

• Tolerance of failures of the storage servers, the file manager, the stripe manager,

and the clients.

7 Conclusion

Zebra applies ideas from log-structured file system research and RAID research to net-

work file systems, resulting in a system that has the following advantages over existing

network file systems:

Scalable performance. The transfer rate for a single file is proportional to the number

2. The algorithm for choosing which stripe to clean is beyond the scope of this paper.
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of servers in the system.

Cost effective servers. Zebra servers do not need to be high-performance machines or

have special-purpose hardware. The performance of the file system can be increased

by adding more servers, rather than replacing the existing ones.

High server efficiency. Server overhead is reduced because clients write to the storage

servers in large transfers, and the servers do not interpret the contents of the stripe

fragments they store. There are no per-file or per-block server overheads associated

with writing a stripe fragment to a storage server.

Simple parity mechanism. Parity is computed by the clients as they write out stripe

fragments. Parity is never updated, so expensive parity update computations and

atomic operations are not needed.

Uniform server loads. Striping reduces the variance of the server loads by distributing

hot files across multiple storage servers.

The Zebra architecture promises to provide high-performance file access to both large

and small files. Large files are striped to improve their transfer rate; small file writes are

batched together to reduce server overheads. The result is a cost-effective, scalable,

highly-available network file system that can provide file service to a supercomputer as

easily as to a workstation.
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